Multi-environment trial analysis of count data with complex variance structures using generalised linear mixed models

Michael Mumford Dr. Alan Huang Dr. Alison Kelly November 25, 2025

► Motivating multi-environment trial (MET) data

- ► Motivating multi-environment trial (MET) data
- ► Mixed models

- ► Motivating multi-environment trial (MET) data
- Mixed models
- Mean parameterised Conway-Maxwell Poisson (CMP_μ) distribution

- ► Motivating multi-environment trial (MET) data
- Mixed models
- ► Mean parameterised Conway-Maxwell Poisson (CMP_μ) distribution
- Statistical model

- ► Motivating multi-environment trial (MET) data
- Mixed models
- ► Mean parameterised Conway-Maxwell Poisson (CMP_μ) distribution
- Statistical model
 - Factor-analytic Conway-Maxwell Poisson (FA-CMP $_{\mu}$) model

- ► Motivating multi-environment trial (MET) data
- Mixed models
- ► Mean parameterised Conway-Maxwell Poisson (CMP_μ) distribution
- Statistical model
 - ► Factor-analytic Conway-Maxwell Poisson (FA-CMP_μ) model
- Results & key findings

The motivating MET data is from a series of 13 common bean *Phaselous vulgaris* variety trials conducted at 9 locations across Ethiopia in the 2022 and 2023 seasons

Image from Karyna Panchenko. CC0 1.0 license

Response variable is pod count per plant

► Each trial contained 48 to 160 genotypes

- Each trial contained 48 to 160 genotypes
- ► Each genotype was replicated 3 times using a row-column design using the odw R-package

Genotype concurrence across trials

	AN22	AN23	BK23	HU22	HW23	JM22	JM23	MK22	MK23	PW22	SK22	SK23	WK23	# of	# of
Trial	⋖	⋖	<u> </u>	I	Í		\neg	Σ	Σ	۵	S	S	>	columns	rows
AN22	160													24	20
AN23	45	135												15	27
BK23	45	135	135											15	27
HU23	16	48	48	48										12	12
HW23	45	135	135	48	135									15	27
JM22	85	35	35	6	35	85								15	17
JM23	35	110	110	23	110	33	110							15	22
MK22	160	45	45	16	45	85	35	160						15	32
MK23	45	135	135	48	135	35	110	45	135					15	27
PW22	85	33	33	4	33	81	33	85	33	85				15	17
SK22	95	24	24	14	24	20	14	95	24	20	95			15	19
SK23	19	48	48	36	48	9	23	19	48	7	17	48		12	12
WK23	37	110	110	23	110	34	101	37	110	33	16	23	110	15	22

Mixed Models

The analysis of agricultural multi-environment trial (MET) data for continuous response variables is performed using linear mixed models (LMMs).

The analysis of agricultural multi-environment trial (MET) data for continuous response variables is performed using linear mixed models (LMMs).

Three strengths of mixed models (Smith et al. 2005)

The analysis of agricultural multi-environment trial (MET) data for continuous response variables is performed using linear mixed models (LMMs).

Three strengths of mixed models (Smith et al. 2005)

► Ease with which incomplete data can be handled

The analysis of agricultural multi-environment trial (MET) data for continuous response variables is performed using linear mixed models (LMMs).

Three strengths of mixed models (Smith et al. 2005)

- ► Ease with which incomplete data can be handled
- ▶ Ability to assume some sets of effects are random rather than fixed

The analysis of agricultural multi-environment trial (MET) data for continuous response variables is performed using linear mixed models (LMMs).

Three strengths of mixed models (Smith et al. 2005)

- ► Ease with which incomplete data can be handled
- Ability to assume some sets of effects are random rather than fixed
- ► Ability to use more realistic variance models for random effects and residual error

The analysis of agricultural multi-environment trial (MET) data for continuous response variables is performed using linear mixed models (LMMs).

Three strengths of mixed models (Smith et al. 2005)

- ► Ease with which incomplete data can be handled
- Ability to assume some sets of effects are random rather than fixed
- ► Ability to use more realistic variance models for random effects and residual error

When the LMM assumptions are violated, an extension to a Generalised linear mixed model (GLMM) is required

Count data in agricultural research is ubiquitous

Most common distribution for count data is the Poisson(λ) distribution

- Most common distribution for count data is the Poisson(λ) distribution
- ▶ Very restrictive assumption that E(y) = var(y)

- Most common distribution for count data is the Poisson(λ) distribution
- ▶ Very restrictive assumption that E(y) = var(y)
- ► Some extensions to the Poisson distribution have been proposed
 - Generalised Poisson distribution
 - ► Tweedie distribution

- Most common distribution for count data is the Poisson(λ) distribution
- ▶ Very restrictive assumption that E(y) = var(y)
- ► Some extensions to the Poisson distribution have been proposed
 - Generalised Poisson distribution
 - ► Tweedie distribution
- None of these proposed distributions can account for arbitrarily over and underdispersed count data

CMP_µ distribution

► The mean-parameterised Conway-Maxwell Poisson (CMP $_{\mu}$, Huang 2017) distribution overcomes these key issues

CMP_u distribution

- ► The mean-parameterised Conway-Maxwell Poisson (CMP $_{\mu}$, Huang 2017) distribution overcomes these key issues
 - 1. CMP_{μ} distribution is part of the exponential family

CMP_u distribution

- ► The mean-parameterised Conway-Maxwell Poisson (CMP $_{\mu}$, Huang 2017) distribution overcomes these key issues
 - 1. CMP_{μ} distribution is part of the exponential family
 - 2. The CMP $_{\mu}$ distribution can handle arbitrarily over and underdispersed data (Huang 2023)

CMP_u distribution

- ► The mean-parameterised Conway-Maxwell Poisson (CMP $_{\mu}$, Huang 2017) distribution overcomes these key issues
 - 1. CMP_{μ} distribution is part of the exponential family
 - 2. The CMP $_{\mu}$ distribution can handle arbitrarily **over and underdispersed** data (Huang 2023)
 - 3. The dispersion parameter $\nu(\phi)$ is functionally independent of the location parameter μ (Huang & Rathouz 2017)

CMP_u probability mass function

$$p(y;\mu,\nu)\propto \frac{\lambda(\mu,\nu)^y}{(y!)^\nu},\quad y=0,1,2,\ldots,$$

The mode parameter $\lambda(\mu, \nu)$ is obtained by solving

$$\sum_{y=0}^{\infty} (y-\mu) \frac{\lambda^{y}}{(y!)^{\nu}} = 0,$$

CMP_u probability mass function

$$p(y;\mu,\nu)\propto \frac{\lambda(\mu,\nu)^y}{(y!)^\nu},\quad y=0,1,2,\ldots,$$

The mode parameter $\lambda(\mu, \nu)$ is obtained by solving

$$\sum_{y=0}^{\infty} (y-\mu) \frac{\lambda^y}{(y!)^{\nu}} = 0,$$

$$\phi \propto 1/\nu$$

Statistical Model

$$I(oldsymbol{eta}, oldsymbol{\gamma}, oldsymbol{\phi}, oldsymbol{y} | oldsymbol{u}) = \sum_{j=1}^t \sum_{i=1}^{m_j} \sum_{l=1}^{d_j} \log ig(oldsymbol{p}(y_{ijl}; \mu_{ijl},
u_j) ig) \ \log(oldsymbol{\mu}) = oldsymbol{X} oldsymbol{eta} + oldsymbol{Z}_{\mathrm{g}} oldsymbol{u}_{\mathrm{g}} + oldsymbol{Z}_{\mathrm{o}} oldsymbol{u}_{\mathrm{o}}, \ \log(oldsymbol{
u}) = oldsymbol{X} oldsymbol{\zeta},$$

 $ightharpoonup p(y_{ijl}; \mu_{ijl}, \nu_j)$ is the probability mass function for the CMP $_{\mu}$ distribution for the i^{th} genotype in the j^{th} environment (i.e. trial) within the I^{th} replicate block

$$egin{aligned} I(oldsymbol{eta}, oldsymbol{\gamma}, oldsymbol{\phi}, oldsymbol{y} | oldsymbol{u}) &= \sum_{j=1}^t \sum_{i=1}^{m_j} \sum_{l=1}^{d_j} \log ig(p(y_{ijl}; \mu_{ijl},
u_j) ig) \ \log(oldsymbol{\mu}) &= oldsymbol{X} oldsymbol{eta} + oldsymbol{Z}_{ ext{g}} oldsymbol{u}_{ ext{g}} + oldsymbol{Z}_{ ext{o}} oldsymbol{u}_{ ext{o}}, \ \log(oldsymbol{
u}) &= oldsymbol{X} oldsymbol{\zeta}, \end{aligned}$$

- The vectors $\boldsymbol{\beta}$ and $\boldsymbol{\zeta}$ are each of length t and denote the environment fixed effects for the mean and dispersion parameters respectively, each with corresponding design matrix \boldsymbol{X}
- t is the total number of environments

A factor analytic structure for the random G×E interaction effect

$$u_{\mathrm{g}}=(\Lambda\otimes I_{m})f+\delta$$

- \mathbf{u}_{g} is the vector of random genotype by environment (G×E) interaction effects of length mt, and has a factor analytic structure of order k
- ▶ Denoted as an FA(k) model
- m is the total number of genotypes

A factor analytic structure for the random G×E interaction effect

$$u_{\mathrm{g}}=(\Lambda\otimes I_{m})f+\delta$$

- \mathbf{u}_{g} is the vector of random genotype by environment (G×E) interaction effects of length mt, and has a factor analytic structure of order k
- \triangleright Denoted as an FA(k) model
- ▶ *m* is the total number of genotypes
- $ightharpoonup \Lambda$ is a $t \times k$ matrix of environmental loadings

A factor analytic structure for the random G×E interaction effect

$$u_{\mathrm{g}}=(\Lambda\otimes I_{m})f+\delta$$

- \mathbf{u}_{g} is the vector of random genotype by environment (G×E) interaction effects of length mt, and has a factor analytic structure of order k
- \triangleright Denoted as an FA(k) model
- ▶ *m* is the total number of genotypes
- $ightharpoonup \Lambda$ is a $t \times k$ matrix of environmental loadings
- $ightharpoonup f \sim N(\mathbf{0}, I_{mk})$ is a vector of genotype scores of length mk

A factor analytic structure for the random G×E interaction effect

$$u_{\mathrm{g}}=(\Lambda\otimes I_{m})f+\delta$$

- \mathbf{u}_{g} is the vector of random genotype by environment (G×E) interaction effects of length mt, and has a factor analytic structure of order k
- \triangleright Denoted as an FA(k) model
- ▶ *m* is the total number of genotypes
- $ightharpoonup \Lambda$ is a $t \times k$ matrix of environmental loadings
- $ightharpoonup f \sim N(\mathbf{0}, I_{mk})$ is a vector of genotype scores of length mk
- $m{\delta} \sim N(m{0}, \Psi \otimes m{I}_m)$ is a vector of genetic regression residuals of length mt

A factor analytic structure for the random G×E interaction effects

$$u_{
m g}=(\Lambda\otimes \mathit{I}_{\it m})f+\delta$$

$$lackbox{ }\mathsf{var}(oldsymbol{u}_\mathsf{g}) = \left(oldsymbol{\Lambda}oldsymbol{\Lambda}^\mathsf{T} + oldsymbol{\Psi}
ight) \otimes oldsymbol{I}_m$$

A factor analytic structure for the random G×E interaction effects

$$u_{\mathrm{g}} = (\Lambda \otimes \mathit{l}_{\mathit{m}})f + \delta$$

- $lackbr{\triangleright}$ $\mathsf{var}(oldsymbol{u}_\mathsf{g}) = ig(oldsymbol{\Lambda} oldsymbol{\Lambda}^\mathsf{T} + oldsymbol{\Psi} ig) \otimes oldsymbol{I}_m$
- $lackbox{} \Lambda\Lambda^{\mathcal{T}}$ captures the 'repeatable' $G\times E$ interaction

A factor analytic structure for the random G×E interaction effects

$$u_{\mathrm{g}}=(\Lambda\otimes I_{m})f+\delta$$

- $lackbr{\triangleright}$ $\mathsf{var}(oldsymbol{u}_\mathsf{g}) = ig(oldsymbol{\Lambda} oldsymbol{\Lambda}^\mathsf{T} + oldsymbol{\Psi} ig) \otimes oldsymbol{I}_m$
- \blacktriangleright $\Lambda\Lambda^T$ captures the 'repeatable' $G\times E$ interaction
- $lackbox{\Psi}$ is a t imes t diagonal matrix containing the specific variances for each environment

A difficulty arising with GLMMs is that inference from the marginal log-likelihood is analytically intractable

A difficulty arising with GLMMs is that inference from the marginal log-likelihood is analytically intractable

The Laplace Approximation estimation method acquires a good 'balance' between estimation accuracy and computational speed (Pinheiro et al. 1995).

A difficulty arising with GLMMs is that inference from the marginal log-likelihood is analytically intractable

The Laplace Approximation estimation method acquires a good 'balance' between estimation accuracy and computational speed (Pinheiro et al. 1995).

Computationally infeasible for complex variance structures

A difficulty arising with GLMMs is that inference from the marginal log-likelihood is analytically intractable

The Laplace Approximation estimation method acquires a good 'balance' between estimation accuracy and computational speed (Pinheiro et al. 1995).

- Computationally infeasible for complex variance structures
- ► This has been resolved recently with the glmmTMB R-package (Brooks *et al.* 2017)
- glmmTMB uses automatic differentiation to speed up the computation of high dimensional gradient functions (Griewank and Walther, 2008)

REML correction for GLMM

The glmmTMB R-package has the option to use the LA with a REML adjustment.

REML correction for GLMM

The glmmTMB R-package has the option to use the LA with a REML adjustment.

▶ The REML adjustment is obtained by marginalising with respect to β as well as u (Maestrini et al. 2024)

$$I_{\mathsf{REML}}(oldsymbol{\gamma}, oldsymbol{\phi}; oldsymbol{y}) pprox I(\hat{oldsymbol{eta}}, oldsymbol{\gamma}, oldsymbol{\phi}, oldsymbol{ ilde{u}}; oldsymbol{y}) + (n-t) \mathrm{log} \sqrt{2\pi} - rac{1}{2} |oldsymbol{H}^*|$$

 $ightharpoonup H^*$ is the Hessian of $I(\hat{oldsymbol{eta}}, oldsymbol{\gamma}, oldsymbol{\phi}, ilde{oldsymbol{u}}; oldsymbol{y})$

► Model G×E interaction effects using FA variance structure

- ► Model G×E interaction effects using FA variance structure
- \blacktriangleright Model heterogeneous dispersion using the CMP_{μ} distribution

- ► Model G×E interaction effects using FA variance structure
- ▶ Model heterogeneous dispersion using the CMP $_{\mu}$ distribution
- ► Enables partitioning of genetic sources of variation from non-genetic sources and dispersion

- ► Model G×E interaction effects using FA variance structure
- ▶ Model heterogeneous dispersion using the CMP $_{\mu}$ distribution
- ► Enables partitioning of genetic sources of variation from non-genetic sources and dispersion
- lacktriangle Goal is genotypic selection by maximising prediction accuracy of $u_{
 m g}$

Model implementation

FA models of various order were fit to model the G×E interaction effects

► Fitted initial model using a diagonal variance structure before fitting the FA(1) model

Model implementation

FA models of various order were fit to model the G×E interaction effects

- ► Fitted initial model using a diagonal variance structure before fitting the FA(1) model
- ▶ Initial values from the preceding model were used as starting values

Model implementation

FA models of various order were fit to model the G×E interaction effects

- ► Fitted initial model using a diagonal variance structure before fitting the FA(1) model
- Initial values from the preceding model were used as starting values
- ightharpoonup Random row and column terms fitted for each trial to adjust for spatial field trend through $u_{
 m o}$

Results & key findings

FA model of order 3 was the best fit as per the AIC criteria

 \triangleright FA(3) model explains 75.1% of the total G×E interaction effects.

$$\mathsf{AIC} = -2\mathit{I}_{\mathsf{LA},\;\mathsf{REML}}(oldsymbol{\gamma},oldsymbol{\phi};oldsymbol{y}) + 2q$$

$G{ imes}E$	Number of	
variance	non-boundary	AIC
structure	parameters (q)	
Diagonal	49	25857
FA(k=1)	62	25695
FA(k=2)	74	25694
FA(k=3)	79	25688
FA(k=4)	89	25695
FA(k=5)	94	25701
Unstructured	127	25761

Trial	Trial log Mean \hat{eta}_j	Trial Dispersion $1/\hat{ u}_j$	Sqrt Genetic Variance $\hat{\sigma}_{g_j}$
AN22	3.29	1.88	0.18
AN23	2.98	1.62	0.13
BK23	2.32	0.72	0.19
HU23	3.00	0.18	0.08
HW23	2.74	0.72	0.10
JM22	2.93	0.69	0.10
JM23	2.63	1.32	0.17
MK22	3.01	1.43	0.17
MK23	3.09	2.51	0.22
PW22	2.19	0.39	0.18
SK22	2.75	0.38	0.12
SK23	3.33	0.61	0.08
WK23	2.86	0.82	0.20

► All trials have genetic variance

Trial	Trial log Mean \hat{eta}_j	Trial Dispersion $1/\hat{ u}_j$	Sqrt Genetic Variance $\hat{\sigma}_{g_j}$
AN22	3.29	1.88	0.18
AN23	2.98	1.62	0.13
BK23	2.32	0.72	0.19
HU23	3.00	0.18	0.08
HW23	2.74	0.72	0.10
JM22	2.93	0.69	0.10
JM23	2.63	1.32	0.17
MK22	3.01	1.43	0.17
MK23	3.09	2.51	0.22
PW22	2.19	0.39	0.18
SK22	2.75	0.38	0.12
SK23	3.33	0.61	0.08
WK23	2.86	0.82	0.20

- ► All trials have genetic variance
- ➤ Some trials have strong under dispersion

Trial	Trial log Mean \hat{eta}_j	Trial Dispersion $1/\hat{ u}_j$	Sqrt Genetic Variance $\hat{\sigma}_{g_j}$
AN22	3.29	1.88	0.18
AN23	2.98	1.62	0.13
BK23	2.32	0.72	0.19
HU23	3.00	0.18	0.08
HW23	2.74	0.72	0.10
JM22	2.93	0.69	0.10
JM23	2.63	1.32	0.17
MK22	3.01	1.43	0.17
MK23	3.09	2.51	0.22
PW22	2.19	0.39	0.18
SK22	2.75	0.38	0.12
SK23	3.33	0.61	0.08
WK23	2.86	0.82	0.20

- ► All trials have genetic variance
- ➤ Some trials have strong under dispersion
- ➤ Trial with highest mean count is underdispersed

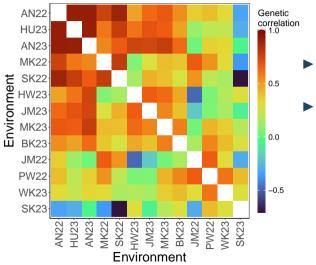
Trial	Trial log Mean \hat{eta}_j	Trial Dispersion $1/\hat{ u}_j$	Sqrt Genetic Variance $\hat{\sigma}_{\mathbf{g}_j}$
AN22	3.29	1.88	0.18
AN23	2.98	1.62	0.13
BK23	2.32	0.72	0.19
HU23	3.00	0.18	0.08
HW23	2.74	0.72	0.10
JM22	2.93	0.69	0.10
JM23	2.63	1.32	0.17
MK22	3.01	1.43	0.17
MK23	3.09	2.51	0.22
PW22	2.19	0.39	0.18
SK22	2.75	0.38	0.12
SK23	3.33	0.61	0.08
WK23	2.86	0.82	0.20

- ► All trials have genetic variance
- ➤ Some trials have strong under dispersion
- ► Trial with highest mean count is underdispersed
- ► Trial with highest dispersion also has the highest genetic variance

Trial	Trial log Mean \hat{eta}_j	Trial Dispersion $1/\hat{ u}_j$	Sqrt Genetic Variance $\hat{\sigma}_{g_j}$
AN22	3.29	1.88	0.18
AN23	2.98	1.62	0.13
BK23	2.32	0.72	0.19
HU23	3.00	0.18	0.08
HW23	2.74	0.72	0.10
JM22	2.93	0.69	0.10
JM23	2.63	1.32	0.17
MK22	3.01	1.43	0.17
MK23	3.09	2.51	0.22
PW22	2.19	0.39	0.18
SK22	2.75	0.38	0.12
SK23	3.33	0.61	0.08
WK23	2.86	0.82	0.20

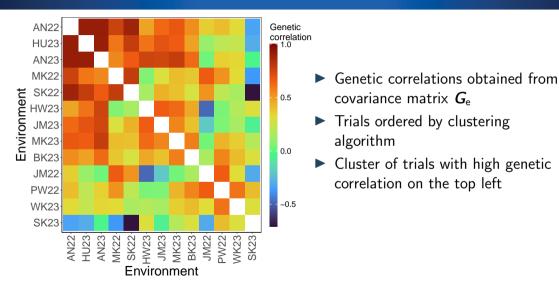
- ► All trials have genetic variance
- ➤ Some trials have strong under dispersion
- ► Trial with highest mean count is underdispersed
- ► Trial with highest dispersion also has the highest genetic variance
- ► Trials with next two highest genetic variances are underdispersed

Results of MET analysis - Heatmap

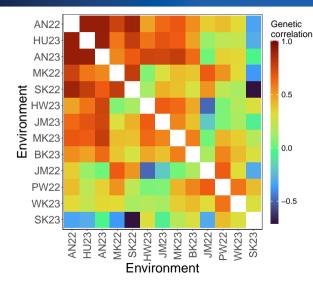


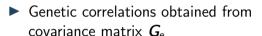
- ► Genetic correlations obtained from covariance matrix **G**_e
- ► Trials ordered by clustering algorithm

Results of MET analysis - Heatmap



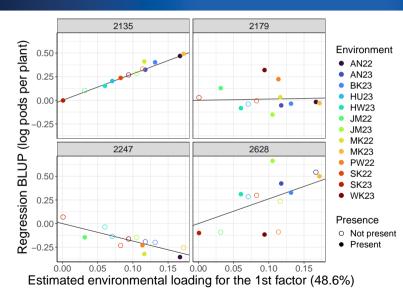
Results of MET analysis - Heatmap





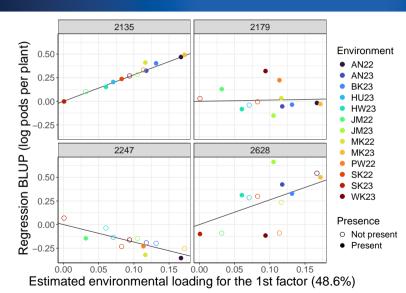
- Trials ordered by clustering algorithm
- ► Cluster of trials with high genetic correlation on the top left
- ► Trials on the bottom right generally have low genetic correlations

Latent regression plot



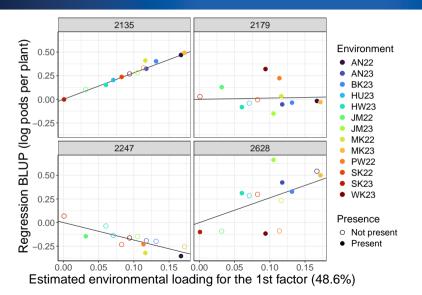
Subset of four genotypes

Latent regression plot



- Subset of four genotypes
- ► All rotated loadings > 0

Latent regression plot



- Subset of four genotypes
- All rotated loadings0
- Some genotypes have higher 'lack of fit'

The FA-CMP $_{\mu}$ model is proposed to analyse MET count data using a GLMM framework

lacktriangle Assumes the data follows a CMP $_\mu$ distribution

- ightharpoonup Assumes the data follows a CMP_{μ} distribution
 - ▶ Enables partitioning of dispersion from genetic and non-genetic variation

- ightharpoonup Assumes the data follows a CMP $_{\mu}$ distribution
 - ▶ Enables partitioning of dispersion from genetic and non-genetic variation
 - ► Trial dispersion independent of trial mean

- ightharpoonup Assumes the data follows a CMP $_{\mu}$ distribution
 - ► Enables partitioning of dispersion from genetic and non-genetic variation
 - ► Trial dispersion independent of trial mean
- ▶ Use an FA structure to model the G×E interaction effects

- ightharpoonup Assumes the data follows a CMP $_{\mu}$ distribution
 - ► Enables partitioning of dispersion from genetic and non-genetic variation
 - Trial dispersion independent of trial mean
- ▶ Use an FA structure to model the G×E interaction effects
- ► Uses the glmmTMB R-package to fit the model

- ightharpoonup Assumes the data follows a CMP $_{\mu}$ distribution
 - ► Enables partitioning of dispersion from genetic and non-genetic variation
 - ► Trial dispersion independent of trial mean
- \blacktriangleright Use an FA structure to model the G×E interaction effects
- ► Uses the glmmTMB R-package to fit the model
 - ▶ Automatic differentiation to make model fitting computationally feasible

- ightharpoonup Assumes the data follows a CMP $_{\mu}$ distribution
 - ► Enables partitioning of dispersion from genetic and non-genetic variation
 - Trial dispersion independent of trial mean
- \blacktriangleright Use an FA structure to model the G×E interaction effects
- ▶ Uses the glmmTMB R-package to fit the model
 - ▶ Automatic differentiation to make model fitting computationally feasible
 - ► Laplace approximation estimation method to reduce bias

- ightharpoonup Assumes the data follows a CMP $_{\mu}$ distribution
 - ► Enables partitioning of dispersion from genetic and non-genetic variation
 - Trial dispersion independent of trial mean
- \blacktriangleright Use an FA structure to model the G×E interaction effects
- ► Uses the glmmTMB R-package to fit the model
 - ▶ Automatic differentiation to make model fitting computationally feasible
 - ► Laplace approximation estimation method to reduce bias
 - ▶ REML correction to further reduce estimation bias

Acknowledgements

- ▶ Dr. Alan Huang and Dr. Alison Kelly for their ongoing support, expertise, & mentorship
- Queensland Department of Primary Industries for financial support & time to work on the project

Acknowledgements

- ► The National Lowland Pulse Research Program at the Ethiopian Institute for Agricultural Research (EIAR) for conducting the trials & offering essential facilities, data & support for this study.
- ► The MERCI project team at both EIAR and the University of Queensland within QAAFI, funded by the Gates Foundation

References

- Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., ... and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling.
- Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM.
- Huang, A. (2017). Mean-parameterized Conway-Maxwell-Poisson regression models for dispersed counts. Statistical Modelling, 17, 359-380.
- Huang, A. (2023). On arbitrarily underdispersed discrete distributions. The American Statistician, 77, 29-34.
- Huang, A. and Rathouz, P.J. (2017). Orthorogonality of the mean and error distribution in generalized linear models. Communications in Statistics-Theory and Methods, 46, 3290-3296.
- Maestrini, L., Hui, F. K., and Welsh, A. H. (2024). Restricted maximum likelihood estimation in generalized linear mixed models. arXiv preprint arXiv:2402.12719
- Pinheiro, J. C. and Bates, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. *Journal of computational and Graphical Statistics*, 4, 12-35.
- Smith, A., Cullis, B. R., and Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. *The Journal of Agricultural Science*, 143, 449-462.