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Motivating MET Data
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Motivating MET data

The motivating MET data is from a
series of 13 common bean Phaselous
vulgaris variety trials conducted at 9
locations across Ethiopia in the 2022
and 2023 seasons

Image from Karyna Panchenko. CC0 1.0 license
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https://www.stockvault.net/photo/290733/zlib/common
https://www.stockvault.net/photo/290733/zlib/common
https://creativecommons.org/publicdomain/zero/1.0/


Response variable is pod count per
plant

5 / 30



Motivating MET Data

▶ Each trial contained 48 to 160
genotypes

▶ Each genotype was replicated 3
times using a row-column design
using the odw R-package
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Motivating MET Data

Genotype concurrence across trials
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AN22 160 24 20
AN23 45 135 15 27
BK23 45 135 135 15 27
HU23 16 48 48 48 12 12
HW23 45 135 135 48 135 15 27
JM22 85 35 35 6 35 85 15 17
JM23 35 110 110 23 110 33 110 15 22
MK22 160 45 45 16 45 85 35 160 15 32
MK23 45 135 135 48 135 35 110 45 135 15 27
PW22 85 33 33 4 33 81 33 85 33 85 15 17
SK22 95 24 24 14 24 20 14 95 24 20 95 15 19
SK23 19 48 48 36 48 9 23 19 48 7 17 48 12 12
WK23 37 110 110 23 110 34 101 37 110 33 16 23 110 15 22
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Mixed Models
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The mixed model

The analysis of agricultural multi-environment trial (MET) data for continuous
response variables is performed using linear mixed models (LMMs).

Three strengths of mixed models (Smith et al. 2005)

▶ Ease with which incomplete data can be handled

▶ Ability to assume some sets of effects are random rather than fixed

▶ Ability to use more realistic variance models for random effects and residual
error

When the LMM assumptions are violated, an extension to a Generalised linear
mixed model (GLMM) is required
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Poisson distribution

Count data in agricultural research is ubiquitous

▶ Most common distribution for count data is the Poisson(λ) distribution

▶ Very restrictive assumption that E(y) = var(y)

▶ Some extensions to the Poisson distribution have been proposed
▶ Generalised Poisson distribution
▶ Tweedie distribution

▶ None of these proposed distributions can account for arbitrarily over and
underdispersed count data
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CMPµ distribution

▶ The mean-parameterised Conway-Maxwell Poisson (CMPµ, Huang 2017)
distribution overcomes these key issues

1. CMPµ distribution is part of the exponential family
2. The CMPµ distribution can handle arbitrarily over and underdispersed

data (Huang 2023)
3. The dispersion parameter ν(ϕ) is functionally independent of the location

parameter µ (Huang & Rathouz 2017)
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CMPµ probability mass function

p(y ;µ, ν) ∝ λ(µ, ν)y

(y !)ν
, y = 0, 1, 2, . . . ,

The mode parameter λ(µ, ν) is obtained by solving

∞∑
y=0

(y − µ)
λy

(y !)ν
= 0,

ϕ ∝ 1/ν
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Statistical Model
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Statistical model

l(β,γ,ϕ, y |u) =
t∑

j=1

mj∑
i=1

dj∑
l=1

log
(
p(yijl ;µijl , νj)

)
log(µ) = Xβ + Zgug + Zouo,

log(ν) = Xζ,

▶ p(yijl ;µijl , νj) is the probability mass function for the CMPµ distribution for
the i th genotype in the j th environment (i.e. trial) within the l th replicate
block
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Statistical model

l(β,γ,ϕ, y |u) =
t∑

j=1

mj∑
i=1

dj∑
l=1

log
(
p(yijl ;µijl , νj)

)
log(µ) = Xβ + Zgug + Zouo,

log(ν) = Xζ,

▶ The vectors β and ζ are each of length t and denote the environment fixed
effects for the mean and dispersion parameters respectively, each with
corresponding design matrix X

▶ t is the total number of environments
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A factor analytic structure for the ran-
dom G×E interaction effect

ug = (Λ⊗ Im)f + δ

▶ ug is the vector of random genotype by environment (G×E) interaction
effects of length mt, and has a factor analytic structure of order k

▶ Denoted as an FA(k) model

▶ m is the total number of genotypes

▶ Λ is a t × k matrix of environmental loadings

▶ f ∼ N(0, Imk) is a vector of genotype scores of length mk

▶ δ ∼ N(0,Ψ⊗ Im) is a vector of genetic regression residuals of length mt
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A factor analytic structure for the ran-
dom G×E interaction effects

ug = (Λ⊗ Im)f + δ

▶ var(ug) =
(
ΛΛT +Ψ)⊗ Im

▶ ΛΛT captures the ‘repeatable’ G×E interaction

▶ Ψ is a t × t diagonal matrix containing the specific variances for each
environment
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Laplace Approximation estimation
method

A difficulty arising with GLMMs is that inference from the marginal log-likelihood
is analytically intractable

The Laplace Approximation estimation method acquires a good ‘balance’
between estimation accuracy and computational speed (Pinheiro et al. 1995).

▶ Computationally infeasible for complex variance structures

▶ This has been resolved recently with the glmmTMB R-package (Brooks et al.
2017)

▶ glmmTMB uses automatic differentiation to speed up the computation of
high dimensional gradient functions (Griewank and Walther, 2008)
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REML correction for GLMM

The glmmTMB R-package has the option to use the LA with a REML adjustment.

▶ The REML adjustment is obtained by marginalising with respect to β as
well as u (Maestrini et al. 2024)

lREML(γ,ϕ; y) ≈ l(β̂,γ,ϕ, ũ; y) + (n − t)log
√
2π − 1

2
|H∗|

▶ H∗ is the Hessian of l(β̂,γ,ϕ, ũ; y)
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Aim

The proposed statistical model for the analysis of MET count data is referred to
as the FA-CMPµ model

▶ Model G×E interaction effects using FA variance structure

▶ Model heterogeneous dispersion using the CMPµ distribution

▶ Enables partitioning of genetic sources of variation from non-genetic sources
and dispersion

▶ Goal is genotypic selection by maximising prediction accuracy of ug
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Model implementation

FA models of various order were fit to model the G×E interaction effects

▶ Fitted initial model using a diagonal variance structure before fitting the
FA(1) model

▶ Initial values from the preceding model were used as starting values

▶ Random row and column terms fitted for each trial to adjust for spatial field
trend through uo
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Results & key findings
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Results of MET analysis

FA model of order 3 was the best fit as per the AIC criteria

▶ FA(3) model explains 75.1% of the total G×E interaction effects.

AIC = −2lLA, REML(γ,ϕ; y) + 2q

G×E
variance
structure

Number of
non-boundary
parameters (q)

AIC

Diagonal 49 25857
FA(k = 1) 62 25695
FA(k = 2) 74 25694
FA(k = 3) 79 25688
FA(k = 4) 89 25695
FA(k = 5) 94 25701

Unstructured 127 25761
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Results of MET analysis

Trial

Trial
log

Mean

β̂j

Trial
Dispersion

1/ν̂j

Sqrt
Genetic
Variance

σ̂gj

AN22 3.29 1.88 0.18
AN23 2.98 1.62 0.13
BK23 2.32 0.72 0.19
HU23 3.00 0.18 0.08
HW23 2.74 0.72 0.10
JM22 2.93 0.69 0.10
JM23 2.63 1.32 0.17
MK22 3.01 1.43 0.17
MK23 3.09 2.51 0.22
PW22 2.19 0.39 0.18
SK22 2.75 0.38 0.12
SK23 3.33 0.61 0.08
WK23 2.86 0.82 0.20

▶ All trials have genetic variance

▶ Some trials have strong under
dispersion

▶ Trial with highest mean count is
underdispersed

▶ Trial with highest dispersion also
has the highest genetic variance

▶ Trials with next two highest genetic
variances are underdispersed
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Results of MET analysis - Heatmap
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Latent regression plot
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Summary

The FA-CMPµ model is proposed to analyse MET count data using a GLMM
framework

▶ Assumes the data follows a CMPµ distribution
▶ Enables partitioning of dispersion from genetic and non-genetic variation
▶ Trial dispersion independent of trial mean

▶ Use an FA structure to model the G×E interaction effects

▶ Uses the glmmTMB R-package to fit the model
▶ Automatic differentiation to make model fitting computationally feasible
▶ Laplace approximation estimation method to reduce bias
▶ REML correction to further reduce estimation bias
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